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ABSTRACT 

It is proved in [8] that there exist no totally umbilical Lagrangian sub- 

manifolds in a complex-space-form Mn(4c), n >_ 2, except the totally 

geodesic ones. In this paper we introduce the notion of Lagrangian H- 

umbilical submanifolds which are the "simplest" Lagrangian submanifolds 

next to the totally geodesic ones in complex-space-forms. We show that for 

each Legendre curve in a 3-sphere S 3 (respectively, in a 3-dimensional anti- 

de Sitter space-time H3), there associates a Lagrangian H-umbilical sub- 

manifold in CP n (respectively, in CH n ) via warped products. The main 

part of this paper is devoted to the classification of Lagrangian H-umbi|ical 

submanifolds in CP n and in C/'/n . Our classification theorems imply in 

particular that "except some exceptional classes", Lagrangian H-umbilical 

submanlfolds of CP n and of CH n axe obtained from Legendre curves in S 3 

or in/-13 via warped products. This provides us an interesting interruption 

of Legendre curves and Lagrangian H-umbilicM submanifolds in non-fiat 

complex-space-forms. As an immediate by-product, our results provide us 

many concrete examples of Lagrangian H-umbilical isometric immersions 

of real-space-forms into non-fiat complex-space-forms. 

I .  I n t r o d u c t i o n  

Let / :  M ~ M n be an isometric immersion from a Riemannian n-manifold 

M into a Kaehler n-manifold M n. Then M is called a Lagrangian (or totally 

real in [7]) submanifold if the almost complex structure J of M m carries each 
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tangent space of M into its corresponding normal space. By a complex-space- 

form Mn(4c) we mean a Kaehler manifold with constant holomorphic sectional 

curvature 4c. 

An n-dimensional submanifold M of a Riemannian manifold (N, g) is called 

totally umbilical (respectively, totally geodesic) if its second fundamental form h 

in N satisfies h(X, Y) = g(X, Y)H (respectively, h - 0), where H = ~ trace h 

is the mean curvature vector of M in N. For a totally umbilical submanifold M 

the shape operator AH at H has exactly one eigenvalue; moreover, A~ -- 0 for 

each normal vector ~ perpendicular to H. 

Totally umbilical submanifolds, if they exist, are the simplest submanifolds 

next to totally geodesic submanifolds in a Riemannian manifold. However, it is 

proved in [8] that  there exist no totally umbilical Lagrangian submanifolds in a 

complex-space-form M "  (4c) with n > 2 except the totally geodesic ones. 

In view of above facts it is natural to look for and to investigate the "sim- 

plest" Lagrangian submanifolds next to the totally geodesic ones in complex- 

space-forms M '~(4c). In order to do so we introduce in this paper the concept of 

L a g r a n g i a n  H-umbi l ica l  submani fo lds .  By a Lagrangian H-umbilical sub- 

manifold of a Kaehler manifold M '~ we mean a Lagrangian submanifold whose 

second fundamental takes the following simple form: 

h(el, el) = ~Jel, h(e2, e2) . . . . .  h(en, en) -- #Jel, 
(1.1) 

h(el,ej)=pJej, h(ej,ek)=O, j ~ k ,  j , k = 2 , . . . , n  

for some suitable functions A and # with respect to some suitable orthonormal 

local frame field. It is obvious that condition (1.1) is equivalent to 

(1.2) 
h(X, Y) =c~ (JX, H) (JY, H) H 

+ ~ (H, H) ((X, Y) H + (JX, H) JY + (JY, H) JX} 

for vectors X, Y tangent to M, where (X, Y) = g(X, Y) and 

- 3~ ~ ~ + (n  - 1)~ 
~ - - - - ~ ,  3 = - -  , y -  ? 3~ n 

when H r 0. Clearly, a non-minimal Lagrangian H-umbilical submanifold 

satisfies the following two conditions: 

(a) JH is an eigenvector of the shape operator AH and 

(b) the restriction of AH to (JH) • is proportional to the identity map. 
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On the other hand, because the second fundamental form of a Lagrangian 

submanifold satisfies (cf. [7]) 

(1.3) (h(X, Y), JZ) = (h(Y, Z), JX)  = (h(Z, X), JY)  

for vectors X, Y, Z tangent to M, Lagrangian H-umbilical submanifolds are the 

simplest Lagrangian submanifolds satisfying both Conditions (a) and (b). In 

this way we can regard Lagrangian H-umbilical submanifolds as the simplest 

Lagrangian submanifolds in a complex-space-form next to the totally geodesic 

ones .  

It is proved in [4] that every Lagrangian submanifold M in a non-flat complex- 

space-form M n (4c) satisfies the following sharp inequality: 

(1.3) IHI 2 >_ n2(n _ 1)r - c, 

where T is the scalar curvature of M (see also [3]). It is also proved in [4] that the 

equality case of (1.3) holds identically if and only if M is a special Lagrangian 

H-umbilical submanifold; namely, it satisfies (1.1) with A = 3#. From [3] we 

also know that the class of Lagrangian H-umbilical submanifolds includes the 

important class of twistor holomorphic Lagrangian surfaces in CP 2 . 

The main purpose of this paper is to introduce and to classify Lagrangian 

H-umbilical submanifolds in non-flat complex-space-forms. In order to do so, 

first we observe that Legendre curves in a 3-sphere S 3 and in a 3-dimensional 

anti-de Sitter space-time H 3 are given by solutions of the following second order 

differential equation: 

(1.4) -cz(x), 

where ~(x) is a real-valued function and c a nonzero constant. We then prove that 

for each Legendre curve in S 3 (respectively, H~) there associates a Lagrangian 

H-umbilical submanifold of CP n (respectively, CH n) via warped products in 

a natural way. The main part of this paper is devoted to the classification of 

Lagrangian H-umbilical submanifolds of CP n and of CH ~. Our classification 

theorems imply in particular that "except some exceptional cases", Lagrangian 

H-umbilical submanifolds of CP n and of CH n are obtained from Legendre curves 

in S 3 or in H 3 via warped products. This provides us an interesting interaction of 
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Legendre curves and Lagrangian H-umbilical submanifolds in non-flat complex- 

space-forms. As an immediate by-product, our results provide many concrete 

examples of Lagrangian H-umbilical isometric immersions of real-space-forms 

into complex projective spaces and complex hyperbolic spaces. 

Lagrangian H-umbilical submanifolds in complex Euclidean spaces axe inves- 

tigated in [5]. The author introduces in [5] the notion of complex extensors, 

moreover, he obtains in [5] the classification of Lagrangian H-umbilical submani- 

folds of complex Euclidean n-space C" by utilizing complex extensors of the unit 

hypersurface in Euclidean n-space E ~. 

2. Prel iminaries 

In the following, Mn(4c) denotes a complete simply-connected Kaehler manifold 

of complex dimension n with constant holomorphic sectional curvature 4c. Let M 

be a Lagrangian submanifold of M"(4c). We denote the Levi-Civita connections 

of M and of Mn(4c) by ~7 and ~, respectively. The formulas of Gauss and 

Weingarten axe given respectively by 

(2.1) 
(2.2) 

~ x Y  = V x Y  + h(X,Y),  

V xg = - A r  + Dx~, 

for tangent vector fields X and Y and normal vector fields ~, where D is the 

connection on the normal bundle. The second fundamental form h is related to 

A~ by 

(h(X, Y), ~) = (Ar Y).  

The mean curvature vector H of M is defined by H = ~ trace h. 

For Lagrangian submanifolds, we have (cf. [7]) 

(2.4) 
Dx J Y  = J V x  Y, 

A j x Y  --" - J h ( X ,  Y) = A j y X .  

The above formulas imply immediately that <h(X, Y), JZ) is totally symmet- 

ric. If we denote the curvature tensors of V and D by R and R D, respectively, 

i.e., R(X, Y) = [Vx, Vy] - •[x,Y] and RD(x,  Y) = [Dx, Dy] - D[x,y], then the 
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equations of Gauss, Codazzi and Ricci are given by 

(2.~) 

(2.6) 

(2.7) 

(R( X, Y)Z, W) = ( Ah(v,z)X, W) - ( Ah(x,z)Y, W) 

+ c((X, W) (Y, Z) - (X, Z) (Y, W)), 

(Vh)(X, Y, Z) =(Vh)(Y, X, Z), 

(RD(X, Y)JZ,  JW)  = ([Ajz, Ajw]X, Y) 

+ c((X, w)  (Y, z) - (x, z) (Y, w)), 

where X, Y, Z, W (respectively, r/and ~) are vector fields tangent (respectively, 

normal) to M and Vh is defined by 

(2.8) (Vh)(X, Y, Z) = Dxh(Y, Z) - h(VxY,  Z) - h(Y, VxZ) .  

For a Lagrangian submanifold M in M n (4c), an orthonormal frame field 

e l ~ . . .  , e n , e l . , . . .  , en .  

is called an adap ted  Lagrangian f rame field if e l , . . .  ,en are orthonormal 

tangent vector fields and e l . , . . . ,  e, .  are normal vector fields given by 

(2.9) e l .  = J e l , . . .  , en .  = Jen .  

We recall the following Existence and Uniqueness Theorems for later use (cf. 

[4,6]). 

THEOREM A: Let ( M", ( . ,  .)) be an n-dimensional simply connected R/emann- 

Jan manifold. Let a be a TM-valued symmetric bilinear form on M satisfying 

(1) (a(X, Y), Z) is totally symmetric, 

(2) (Va) (X ,Y ,Z)  = V x a ( Y , Z )  - a (VxY,  Z) - a(Y, V x Z )  is totally 
symmetric, 

(3) R(X, V)Z = c((Y, Z) X - (X, Z) Y) + a(a(Y, Z), X) - a(a(X, Z), Y), 

then there exists a Lagrangian isometric immersion x: (M, (. ,  .)) --* Mn(4c) 

whose second fundamental form h is given by h(X, Y) = Ja(X,  Y). 

THEOREM B: Let x 1, x~: M --* Mn(4c) be two Lagrangian isometric immersions 

ofa  Riemannian manifold M with second fundamental forms h i and h 2. I f  

(hl(X,Y),J=1.Z) = (h2(X,Y) , jx2.Z) ,  
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for all vector fields X,  I", Z tangent to M, then there exists an isometry O of 

M~(4c) such that x 1 = x 2 o r 

Let M = I x I F denote the warped product of an open interval I in R and 

a Riemannian manifold F with warped function f.  Denote by R and R F the 

Riemannian curvature tensors of M and F, respectively. Then R and R F satisfy 

(2.10) R(X,  Y ) Z  = RF(x ,  Y ) Z  - ((]I, Z) X - (X, Z) Y), 

(2.11) R(X,  V ) V =  - ( ~ - ~ - )  X, 

for X, Y, Z tangent to F and V tangent to I. Notice that there is a difference in 

sign between the definition of R of this paper and that of [12]. 

3. A general  m e t h o d  for cons t ruc t ing  Lagrangian submanifolds  

In this section, we mention a general method for constructing Lagrangian sub- 

manifolds both in complex projective spaces and in complex hyperbolic spaces. 

CASE (1): M~(4c) = CPn(4c), c > 0. Let 

s 2 n + l ( c )  ~'~ {Z = (Zl  . . . .  , z,+l) e ~ + I :  (z, z) = 1/c > 0} 

be the hypersphere of C n+x with constant sectional curvature c centered at the 

origin. We consider the Hopf fibration 

(3.1) r: S2n+l(c) ~ CP~ (4c). 

On S2n+l(c) we consider the contact structure r (i.e., the projection of the 

complex structure J of ~ + 1  on the tangent bundle of S 2n+1 (c)) and the structure 

vector field ~ = Jx, where x is the position vector. An isometric immersion 

f:  M ~ $2'~+1(c) is called C-total ly real (or an integral submanifold) if ~ is 

normal to f , ( T M )  and ( r  f , ( T M ) )  = 0, where ( , )  denotes the inner 

product on C ~+1. On C ~+1 we consider the complex structure J induced by 

i = v/Z--1. The main results of [13] can be specialized to our situation as follows. 

Let g: M --* CP '~ (4c) be a Lagrangian isometric immersion. Then there exists 

an isometric covering map r: M ~ M and a C-totally real isometric immersion 

f:  M ~ S 2n+l (C) such that g(7-) = 7r(f). Hence every Lagrangian immersion can 
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be lifted locally (or globally if we assume the manifold is simply connected) to a C- 

totally real immersion of the same Riemannian manifold. Conversely, l e t / :  M -* 

S 2n+1 (c) be a C-totally real isometric immersion. Then g = r ( / ) :  M ~ CP n (4c) 

is again an isometric immersion, which is Lagrangian. Under this correspondence, 

the second fundamental forms h ! and h g o f / a n d  g satisfy ~r.h f = h g. Moreover, 

h I is horizontal with respect to lr. (We shall denote h I and h g simply by h.) 

CASE (2): Mn(4c) = CH'~(c), c < 0. In this case, we consider the complex 

number (n + 1)-space C~1 +1 endowed with the pseudo-Euclidean metric go given 

by 

n+l 

(3.2) go = -dzld21 + Z dzjd2j. 
j=2 

Put  

(3.3) H2n+l(c) ~-- {Z = (Z1, Z 2 , . . . ,  Zn+l): (Z, Z) = 1/C < 0}, 

where (,) denotes the inner product on C~I +1 induced from go. H2n+l(c) is known 

as an anti-de Sitter space-time. 

We put 

~r~ = {z e C-+l:  Re (u, z) = Re (u, i z ) = 0 } ,  H I = { A e C : A ~ = I } .  

Then we have an Hll-action on H~'~+l(c), z ~ Az and at each point z E H~'~+l(c), 

the vector iz  is tangent to the flow of the action. Since the metric go is Hermitian, 

we have Re go(iz, iz) = 1/c. Note that the orbit is given by xt = (cos t + i sin t )z  

and d x j d t  = izt. Thus the orbit lies in the negative definite plane spanned by 

z and iz. The quotient space H2'~+l/,,~, under the identification induced from 

the action, is the complex hyperbolic space CH n (4c) with constant holomorphic 

sectional curvature 4c, with the complex structure J induced from the canonical 

complex structure J on C~I +1 via the following totally geodesic fibration: 

(3.4) ~r: H12'~+1 (c) ~ CH n (4c). 

Just as in Case (1), let g: M --* E H  n (4c) be a Lagrangian isometric immersion. 

Then there exists an isometric covering map v: M --* M and a C-totally real iso- 

metric immersion f :  ,~--* g2n+l(c)  such that g(r) = ~r(f). Hence every totally 
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real immersion can be lifted locally (or globally if we assume the manifold is sim- 

ply connected) to a C-totally real immersion. Conversely, let f :  ~ f - *  H 2n+l (c) 

be a C-totally real isometric immersion. Then g = r ( ] ) :  M -~ CH n (4c) is again 

an isometric immersion, which is Lagrangian. Similarly, under this correspon- 

dence, the second fundamental forms h I and h 9 of f and g satisfy ~r.h I = h g. 

Moreover, h f is horizontal with respect to ~r. (We shall also denote h f and h a 

simply by h.) 

C-totally real curves in $3(c) (or in H3(c)) are known as L e g e n d r e  curves.  

4. Legendre curves and warped Lagrang ian  H-umbi l ica l  subman i fo lds  

In this section we prove that  Legendre curves in $3(c) and H~(c) are given by 

solutions of the second order differential equation z"(x) = i)~(x)z'(x) - c z ( x ) .  

Moreover, for each such Legendre curve, we construct its corresponding canonical 

Lagrangian H-umbilical submanifolds of CP n (4e). 

THEOREM 4.1: Let c be a positive number and z = (Zl,Z2): I --* $3(c) C C 2 

be a unit speed curve where I is either an open interval or a circle. Then the 

following statements hold. 

(a) If  z: I -~ C 2 satisfies differential equation 

(4.1) z"(x)  = - c z ( x )  

for some nonzero real-valued function )~ on I, it defines a Legendre curve 

in $3(c). Conversely, i f  z defines a Legendre curve in $3(c), it satisfies 

differential equation (4.1) for some real-valued function A. 

(b) I f  z: I -~ $3(c) C C 2 is a unit speed Legendre curve such that [z2(x)[ is 

a positive function on I,  then 

(b-l) the map r I x S'~-1(1) --* C ~+1, given by 

(4.2) ~)(X, y l , . . . , y n )  = (Zl(X), Z 2 ( x ) y I , ' . ' ,  Z2(X)Yn) 

with y2 + . . .  + y2 = 1, defines a C-totally real isometric immersion 

r I x}z21 S'~-I(1) ---' S2n+l(c) �9 

The map (4.2) gives rise to a Lagrangian H-umbilical isometric immersion 

(4.3) 

(5-2) 

(4.4) = ~ror 8'~-I(1) ~ CP'~ (4c), 
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(4.6) 

such that, with respect to some orthonormal local frame field e l , . . . ,  en 

with el = O/Ox, the second fundamental form h o r e  satisfies 

h(el ,e l )  = AJel, h(e2,e2) . . . . .  h(e,~,e,~) -- #Je l ,  
(4.5) 

h(el ,ej)  = #Jej ,  h(ej,e~) = 0, j ~ k, j , k  = 2 . . . . .  n, 

where = and denotes the re a part of 

(c) For a unit speed Legendre curve z: I ~ $3(c) C C 2 we have 

(c-1) the map r Sn-l(c)  x I -* C ~+1 , given by 

1 1 

with y~ + . . .  + y~ = 1, defines a C-totally real isometric immersion from 

the warped product manifold Sn-I(c) Xy I I into S2n+i(c), 

(c-2) the warped product N'~(e) = S'~-l(c)  x m I is of constant sectional curva- 

ture c and the immersion r = ~r o r gives rise to a Lagrangian H-umbilical 

isometric immersion from N"  ( c) into CP ~ (4c), 

(c-3) if  the Legendre curve 7 is a closed curve, then N'~(c) is compact and the 

universal lift of the Lagrangian immersion r = ~r o r N '~ (c) --* CP  n (4c) 

is a Lagrangian H-umbilical isometric immersion of S" ( c) into CP n (4c), 

(c-4) the second fundamental form h of the Lagrangian immersion ~ o r takes 

the following form: 

h (e l , e l ) - -  A---Jel, h (e l , e j )=O,  h(e j ,ek)=O,  j , k = 2 , . . . , n ,  
Yl 

with respect to some suitable orthonormal local frame fields. 

(4.7) 

Proof." (a) Suppose z: I ~ $3(c) c ~ is a unit speed curve which satisfies (4.1). 

Then,  by taking the derivative of (iz', iz) = 0 and applying (z, z) = l /c ,  (z', z') = 

1 and equation (4.1), we have (z',iz))~ = O. Let U = {x �9 I: ,~(x) ~ 0}. I f U  = I,  

then (z', iz) = 0 identically on I.  Thus, z defines a Legendre curve in $3(c). Now, 

suppose U r I ,  then we have A = 0 on the open subset I - U. Since (z ~, iz} ~ = 0 

on I - U, the continuity implies (z ~, iz) = 0 identically. Therefore,  z defines a 

Legendre curve in $3(c). 

Conversely, if z defines a Legendre curve in $3(c), then (z ~, iz} = 0 identically. 

Thus, we have (z", iz) -- O. Since z, iz, z' and iz' form an orthogonal  frame field 

along the Legendre curve, z"(x) = i)~(x)z'(x) + k(x)z(x)  for some real-valued 



78 B.-Y. CHEN Isr. J. Math. 

functions A and k. On the other hand, from (% z) = 1/c and (z', z') -- 1, we also 

have (z", z) = -1 .  Thus, k(x )  = - c  which implies (4.1). 

(b) It is easy to verify that map (4.2) defines an immersion from I x Sn-l(1)  

into C ~ + 1 whose induced metric is the warped product metric g = ds2 +lz2 (s) [2g0, 

where go is the standard metric on the unit (n - 1)-sphere Sn-l(1).  

Since z is assumed to define a Legendre curve in $3(c), we have (z, z) = 1/c. 

By combining this with the condition yl 2 + . . - +  y2 = 1, we get (r r  = 1/c. 

Thus I Xlz21 sn- l (1 )  is mapped into S2n+l(c). 

Since (z' ,  iz)  = 0 by hypothesis, (4.2) yields (r ir = 0. For each fixed x E I, 

(4.2) implies that  {x} x S~-1(1) is immersed as a C-totally real submanifold of 

S2n+l(c) in a natural way. Hence, ( X , i r  = 0 for any X tangent to the second 

component of the warped product. Therefore, ir  is normal to the warped product 

I • Sn-l(1)" 

By using (4.2), it is easy to verify that the contact structure r on $2~+1(c) 

maps each tangent vector of the warped product into a normal vector. Conse- 

quently, r is a C-totally real isometric immersion and from the discussion given 

in Case (1) in section 3, we conclude that the composition r = lr o r is in- 

deed a Lagrangian isometric immersion from I x 1~21 S~- 1 (1) into CP '~ (4c). By a 

direct straight-forward computation, we obtain (4.5). This proves Statement (b). 

Statement (c) follow from a straight-forward long computation, too. | 

Similarly, we have the following. 

THEOREM 4.2: Let c be a negative number  and z = (Zl, z2): I -* H3(c ) .C  C 2 

be a unit  speed curve where I is an open interval. 

(1) I f  z: I ~ C21 satisfies differential equation 

(4.8) z " ( x ) = i A z ' ( x )  - cz 

for some nonzero real-valued function A on I,  then it defines a Legendre 

curve in H3(c) .  Conversely, i f  z defines a Legendre curve in H31(c), then 

it satisfies differential equation (4.8) for some real-valued function A. 

(2) I f  z: I -* H3(c) C C 2 is a unit  speed Legendre curve in H3(c) such that  

[zl[ is a posi t ive function, then the map  r I • H~-1( -1)  ~ C~1 +1 given 

by 

(4.9) r 
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with y2 _ y2 . . . . .  y~ = 1 defines a C-totally real isometric immersion 

(4.10) r I xlz, I H n - l ( - 1 )  ---* H~"+l(c). 

(4.9) gives rise to a Lagrangian H-umbilical isometric immersion 

(4.11) ~1 : 7r o r I x[zll H '~ - l ( -1 )  ---* CH'~ (4c). 

(3) With respect to some orthonormal local flame fields e l , . . . ,  e,~ with el = 

O/Ox, the second fundamental form h of r satisfies 

1 
(4.12) h(e l ,e l )  = AJel, h(ej ,ej)  = #Je l ,  # = -[zl]------ ~ (z l , iz~) ,  

h(el ,e j)  = #Jej ,  h(e i ,ek)  = O, j r k, j , k  = 2 , . . .  ,n. 

(4) If  z: I --* H3(c) C C 2 is a unit speed Legendre curve in g3(c) such that 

[z21 is a positive function, then the map 02: I • Sn- l (1)  ~ C~1 +1 given 

by 

(4.13) r  Yl , - . . ,  Y,) = (Zl(X), z 2 ( x ) y b . . . ,  z2(x)yn) 

with 2 ~ 2 C-totally real isometric immersion Yl + Y2 + "'" + Y,~ = 1 defines a 

(4.14) r I xL~21 S'~-I(1) ~ H~+l ( c ) .  

(4.14) gives rise to a Lagrangian H-umbilical isometric immersion 

(4.15) r = lr o r I Xlz21S~-1(1) ~ CH" (4c) 

such that, with respect to some orthonormaI local frame field e l , . . . ,  e ,  

with et = O/Ox, the second fundamental form h of r satisfies 

1 
(4.16) h(el, el) = AJel, h(ej, ej) = #Je l , ,  # = - iz2l----- 5 <z2,iz'2), 

h ( e l , e j ) = # J e j ,  h (e j , ek )=O,  j C k ,  j , k = 2 , . . . , n .  

Because the proof of this theorem is similar to the proof of Theorem 4.1, we 

omit it. 

According to Theorems 4.1 and 4.2, one can construct many Lagrangian H-  

umbilical submanifolds in C P  ~ (4c) and in CH ~ (4c) by using unit speed curves 

in S a and in H 3 which satisfy differential equations (4.1) and (4.8), respectively. 

Remark 4.3: Unit speed curves in $3(c) (respectively, in H31(c)) which satisfy 

the differential equation z" (s) = -cz (s )  are geodesics and they are not necessarily 

Legendre curves. 
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5.  L a g r a n g i a n  H-umbi l i ca l  i m m e r s i o n s  o f  r e a l - s p a c e - f o r m s  i n t o  CP"  

From statement (e) of Theorem 4.1 we know that real-space-forms admit many 

Lagrangian H-umbilical isometric immersions into CP" .  In this section, we study 

Lagrangian H-umbilical isometric immersions of a real-space-form M"(62) into 

CP"  (4c) for 62 > c .  

THEOREM 5.1: Let c be a positive number and n >_ 2. Then 

(i) A simply-connected open portion M of the Riemannian n-sphere S'~(6 2) 

with curvature 6 2 > c admits a Lagrangian H-umbilical isometric 

immersion t: M ---, CP" (4c) such that 

h(el, el) = 2bJel, h(e2, e2) . . . . .  h(e,, e,)  = bJel, 
(5.1) 

h(e i , e j )=bJe j ,  h(ej ,ek)=O, j # k ,  j , k = 2 , . . . , n ,  

for some suitable orthonormal local flame field e l , . . . ,  e,  on M, where b 

is the constant given by b = v/'~-Z~- c. 

(ii) Let L: M --, CP"  (4c) be a Lagrangian H-umbilical isometric immersion 

satisfying (5.1) for some non-trivial function b, then 

(ii-1) b is constant, 

(ii-2) M is an open portion of S'~(6 2) with 6 2 = b 2 + c and hence M is locally 

isometric to the warped product I x t r Sn-l(1) ,  

(ii-3) up to rigid motions o fCP"  (4e), the immersion L is given by the immersion 

t mentioned in Statement (i), and moreover 

(ii-4) L is the composition ~r o r where 7r is the projection of Hopf's fibration 

and r $2'*+1(c) (C r  /s given by 

(5.2) 
e ~ ( b (b -  6) (b(b+6) ~(x, y l , . . . , y , ) = ~  ( ~ + v ~ y l ) e ' ~ X + ,  ~ +V~yl )e  -'~x, 

\ 

(6 - b + byx)e ~6~ - (6 + b - by~)e -~s~, 

6" ~e i~  e-~6~), . ,@,(e ~ + e ,6~)) Y2k "1- �9 �9 -" , 
/ 

= 1,  

and M is the covering space of M via the Hopf fibration. 

Proof: Let M be a simply-connected open portion of S"(62). Then M 

is isometric to an open subset of the warped product I x} ~o~(~) S"- I (1)  with 
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warped metric 

(5.3) 1 2 g = dx  2 + -~ COS (6X)gO, 

where go is the standard metric on sn- l (1 ) .  With respect to a spherical 

coordinate system {u2, . . .  , u,~} on S'~-1(1), we have 

(5.4) �9 u 2 g o = d u ~ + c o s 2 u 2 d u ~ +  " "-}-COS2U2"''COS2Un-I d n" 

From (5.3) and (5.4) we get 

(5.5) 

0 v ~  =0, 
0 

V ~ Ou i - 

O 
V o - 

Oui 

0 =- l f t an( l fx )  0 , 0 _ sin(2tfx) 0 
V ~ Ouk ~ V ~.~ Ou~ 26 Ox' 

0 
tan ui ~-~uj, 2 < _ i < j ,  

sin(26x) J-1 0 j -1  sin uk 0 
I-[ e~ + ~2 cos 2 u~ Ouk' 

26 ~----2 : ~=k+l 

where 2 _< i, j ,  k < n. 

Define a TM-valued symmetric bilinear form a on M by 

(5.6) ) j--1 0 
0 0 -~ bSjk6-2 COS2(6X) H cOs2 Ut O-XX' 

a Ou i ' Ouk g=2 
j , k - -  2 , . . .  ,n, 

where b = ~ - c and 5jk denotes the Kronecker deltas. 

By applying (5.5) and (5.6) and by a long computation, we may prove that 

M together with the symmetric bilinear form a satisfies the three conditions 

mentioned in the Existence Theorem (Theorem A). Therefore, there exists a 

Lagrangian H-umbilical isometric immersion & M ~ CP  n (4c) with h = Ja  as 

its second fundamental form. This proves Statement (i). 

For Statement (ii), let us assume that L: M --. CPn(4c) is a Lagrangian H-  

umbilical isometric immersion whose second fundamental form satisfies 

(5.7) 
h(el, el) = 2bJel, h(e2, e2) . . . . .  h(en, en) = bJel, 

h ( e l , e j ) = b J e j ,  h (e j , ek )=O,  j • k ,  j , k = 2 , . . . , n ,  
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for some non-trivial function b. Then we have 

(5.8) 
qT, 1 h(ej, e ,)  = Del h(ej, el) - h(Veaej,  61) - h(ej, ~ 7 e l e l )  = (elb)dej,  

Ve~h(e l ,e l )  = 2(ejb)Jel ,  j = 2 , . . .  ,n.  

Using (5.8) and Codazzi's equation (2.6) we conclude that b is a constant. 

Therefore, by applying (5.7) and Gauss' equation (2.5), we know that M is of 

constant sectional curvature 6 2 = b 2 + c. Consequently, the Uniqueness Theorem 

(Theorem B) implies that up to rigid motions of CP  '~ (4c), e = L. 

Since L: M ~ CPn(4c) is a Lagrangian H-umbilical isometric immersion 

satisfying (5.1) for some constant b # 0, M is of constant sectional curvature 

6 2 = b 2 + c. Hence M is an open portion of Sn(6 2) which is locally isometric to 

an open portion of the warped product I x ~ cos(6x) Sn-l (1)  with I -- ( - ~ ,  ~ ) .  

So, we may assume the metric of M (and hence of 217/) is given by (5.3)-(5.4). 

Let r h : / ~  S 2n+l (c) C C n+l be a horizontal lift of the Lagrangian immersion 

L: M ---* ePn (4 e )  via Hopf's fibration. Then, by (5.1), (5.5), (5.6) and Gauss' 

formula (2.1), we have 

0r a2r 
(5.9) r = 2b/Cx - cr Cx = ~xx' r  = Ox 2' 

(5.10) Vyr  = (ib - 6 tan(6x))Y, 

(5.11) ~TyfTzr = (Y, Z) {(ib)r - cr + V y Z ,  

where Y, Z are vector fields tangent to the second component S~-I(1)  of the 

warped product and V y Z  is the tangential component of ~TyZ. 

Let {u2, . . .  ,un}  be a spherical coordinate system on Sn-l(1) .  By solving 

(5.9) we obtain 

(5.12) r u 2 , . . . ,  un) = A ( u 2 , . . .  , u , ) e  (b+6)i~ + B ( u 2 , . . .  , Un)e (b-a)iz, 

for some Cn+l-valued vector functions A, B. From (5.10) and (5.12), we find 

OA a B  
(5.13) •uj Ouj' j = 2 , . . . ,  n. 

Using (5.12) and 6 2 = b 2 + c, we get 

(5.14) ibex - cr = -6 ( (b + 6)Ae (b+")i= - (b- 6)Be(b-')i=) . 
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From (5.12) we have 

_ _  _ 0 2  B b ~ ix (5.15) 02r 02Ae(b+6)ix + ~ e  ( - ) 
Ou2 ~ Ou22 Ou22 �9 

On the other hand, (5.3)-(5.5), (5.10) and (5.14) yield 

(5.16) o2r 1 Ou2 - - - ~  = -2--~ ( (b + df)A - (b - ~i)B)(e (b+~)ix + e(b-~)ix). 

Combining (5.15) and (5.16), we find 

02 A 02 B 
(5.17) 0u22 = c9u22 

(5.13) and (5.17) imply 

= - ~ ( ( b  + ~ )A-  (b -  ~)B). 

c33A BA 03B BB 
(5.18) ou---- ~ + ~ = o, ou--- ~ + ~ = o. 

From (5.17) and (5.18) we obtain 

(5.19) 

A = bo + bl sinus + b2 cos u:,  

B = \ b  - dS] b0 + bl sinu2 + b2cosu2, 

83 

where u = u2. If we choose the following initial conditions: 

~b(O,O) = (1/~/'c, O, O), r = (0, i,0), r = (0, 0,1/2~), 

then (5.20) implies 

(5.21) 

e~X(Ib(b~tS)~,  V' ~ + v ~ c o s u )  e 'i:: +~,(b(b+-df)v/~ + v /~cosu )  e_Six, r = ~ 

(~f - b + beosu)e 'Six - (6 + b - beosu)e -6ix, ~fsin u(e 6ix + e-6iz)~.  
/ 

where bo, bl, b2 are C~+l-valued functions of u 3 , . . . ,  un. 
If n = 2, bo, bl, b2 are constant vectors in E 3. Thus (5.12) and (5.19) imply 

(5.20) 
r u) = e ~x bo e6iX+ \ b - ~ f ]  e-~x + (bt s inu + b2 cosu)(e 6i~ + e -6ix) , 
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If n > 2, then (5.5), (5.12), (5.19) and (5.11) with Y = O/Ou2, Z = O/Ou3 

imply Obt/cgu3 = Ob2/OUa = O. Thus 

(5.22) bo - -  b o ( u 4  . . . .  , u n ) ,  b l  = b l ( u 4  . . . .  ,Un). 

Similarly, (5.5), (5.12), (5.19), (5.22) and (6.11) with Y = Z = O/Ou3 imply 

(5.23) b2 : b 3 ( u 4 ,  �9 �9 �9 , ym) sin u3 + b 4 ( u 4 ,  �9 �9 �9 , Un) COS U3. 

By continuing this procedure (n - 1) times, we will obtain 

(5.24) 
{ , b + 6, - -6 iz~  4) =ebiZ{co ~e $iz + [~_6)e  ) 
% 

-t- (e 6ix + e-6ix) (el sin u2 + e2 cos u2 sin uz + . . .  + c,  cos u 2 - "  cos u , )  } 

for some constant vectors Co, C l , . . . ,  c~ E C "+1 . By choosing the following initial 

conditions: 

(5.25) 

Or , o ) = ( o , i , o ,  ,o) ,  r  . . . .  ,o) = . . . . . .  

0r 
0r 0) = ( 0 , . . . ,  0, 1 /26 ) , . . . ,  0u---~(0,..., 0) = (0, 0, 1/2df, 0 , . . . ,  0), 

we obtain (5.2), with 

n n - 1  

Yl ---- I I  COS Uj ,  Y2 = sin Ur. I I  cos uj, 
j = 2  j = 2  

This proves Statement (iii). | 

�9 . . ,  y , = s i n u 2 .  

6 .  L a g r a n g i a n  H-umbi l i ca l  i m m e r s i o n s  o f  rea l - space- fo rms  in to  CH n 

In this section we establish the following Existence and Classification Theorem for 

Lagrangian H-umbilical isometric immersions of real-space-forms into complex 

hyperbolic spaces. 

THEOREM 6 .1 :  Let c be a negative number and n > 2. Then we have 

(i) Every real-space-form Mn(~) of constant sectional curvature ~ with ~ > c 

admits (at least locally) a Lagrangian H-umbilical isometric immersion 

2: M"(~) ~ CH n (4c) whose second fundamental form satisfies 

h(el ,e l )  = 2bJel, h(e2,e2) . . . . .  h(e,~,e.) = bJel, 
(6.1) 

h(e l ,e j )=bJej ,  h(ej,ek)=O, j ~ k ,  j , k = 2 , . . . , n ,  
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(ii) 

(ii-1) 

(ii-2) 

(ii-3) 

(iii) 

with respect to some suitable orthonormal local frame fidds e l , . . . ,  e,~ 

on Mn(~), where b is the constant given by b = ~/~ - c. 

Let L: M ~ CH" (4c) be a Lagrangian H-umbilical isometric immersion 

satisfying (6.1) for some non-trivial function b, then 

b is constant, 

M is a real-space-form M"(~) of constant sectional curvature ~ = b 2 + c, 

and 

up to rigid motions ofCH'~(4c), L is the immersion ~ given in Statement 

(i). 

Let L: M --* CH" (4c) be a Lagrangian H-umbilical isometric immer- 

sion sat is~ing (6.1). Then M is locally isometric to one of the following 

warped products: 

I x~ co~(~=) S"-1(1),  R x 1 E '~-1, R x~s, E '~-l, when n >_ 3, 

IX~cos(~x) R, R X l R ,  R xes ,  R, w h e n n = 2 ;  

and up to rigid motions of CH'~(4c), L is the composition ~r o c~, where 

is the projection from H~ "~+1 (c) onto CH n (4c) mentioned in section 3, 

6 = x/r~, and 

(iii-1) when ~ = b 2 q- c > O, r M ~ H21n+1(e) C C~1 +1 is given by 

(6.2-1) 

0(x, y l , . . . , ~ , )  = ~ l, 4=~ 

(bib § 6) v f ~ y l ) e  - ~ ,  (6 - b + byl)e i6x - (6 + b - byl)e -i6x, + 

6" ~e ~x + e - ~ ) , .  & 'e ~ , Y'~k + e - i~z )  Y2 k �9 �9 
/ 

where y2 + . . .  + y2 = 1 and 6 = v~; 

(iii-2) when 5 = b 2 + c = 0, r M --* H~"+l(c) c C~1 +1 is given by 

(6.2-2) 

r y l , . . .  ,yn) = 
eiJ=-~ 

262 

I v '=-~ ~ 
- ix + T '~' 

j=2 

) x + ~ j = 2 u j , u 2 , . . . , u , ~  ; 
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(iii-3) when e = b 2 + c < O, r M -+ H2n+l(c) C ~ l  +1 is given by 

(6.2-3) 

e(~,u2,...,u,) = 7 -  (d ~ x - - ~ , - ~ u  +e-~(1 
j=2 / 

" 1 -6x . ) 

5=2 

+ ~i)), 

6 = Ca-& 

Proof'. We may assume that M"  (~) is simply-connected, by taking the universal 

covering of M"(~) if necessary. Since Mn(~) is of constant sectional curvature, 

M"(~) is locally isometric to an open portion of the warped product I x } cos(6=) 

S"-1(1) (respectively, I x l E  " - l  or Rx~6. E "-1) if~ = ~2 > 0 (respectively, ~ = 0 

or ~ = _~2 < 0) whenever n _> 3. If n = 2, we replace the second component of 

the warped product by R. 

CASE (a): ~ = 6 2 > 0. In this case, Statement (i) can be proved in exactly the 

same way as the proof of Statement (i) of Theorem 5.1. 

CASE (b): ~ = 0. In this case, M"(0) is locally R xl  E "-1. Thus, 

(6.a) g = ~x2 + d ~  + . . .  + d ~ ,  

where {u2, . . .  , u ,}  is a Euclidean coordinate system on E "-1. We define a 

symmetric bilinear form a by 

(6.4) 
a , = b6jk j , k  = 2 , . . .  ,n,  ~0u~ 

where b = vf:--c. 

By applying (6.4), we may prove that M"(0) together with the symmetric 

bilinear form a satisfies the three conditions given in Theorem A. Therefore, there 

exists a Lagrangian H-umbilical isometric immersion E: Mr(0) --* CH" (4c) with 

h = J a  a.s its second fundamental form. 

CASE (C): C = _~2 <~ 0. In this case, M'*(~) is covered by local coordinate 

system {x, u2, . . .  , un} whose metric tensor is given by 

(6.5) g = dx 2 + e2'Z(d~ + . . .  + ~d.). 
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From (6.5) we have 

(6.6) 
V ~  Ou----~kO _ ,5~ke2, ,O,  2 _< i, j, k <_ n. 

We define a TM-valued symmetric bilinear form a on M ~ (~) by 

(6.7) 

0 

( 0 ,  0 )=b~jke2,~,O j , k = 2 ,  ,n, 
o--;  . . . .  

where b = ~/~ - c. 

By applying (6.6) and (6.7) and by a long computation, we know that  M'~(~) 

together with the symmetric bilinear form a satisfies the three conditions given 

in Existence Theorem (Theorem A). Therefore, there exists a Lagrangian H- 

umbilical isometric immersion ~: M ~ (~) --, CH ~ (4c) with h = Ja as its second 

fundamental form. This proves Statement (i). 

Because Statement (ii) can be proved in exactly the same way as that  of 

Statement (ii) of Theorem 5.1, we omit it. 

Now, we prove Statement (iii). Assume L: M --* CH n (4c) is a Lagrangian 

H-umbilical isometric immersion whose second fundamental form takes the form 

of (6.1) for some constant b ~ 0. Then M is of constant sectional curvature ~2 = 

b 2 + c. Hence M"(5) is locally one of the warped products I x~ r S"-I(1) ,  

R • E "-1,  or I xe,= E '~-1, according to ~ = 62 > 0, 5 = 0, or ~ = -62 < 0. 

When n -- 2, the second component of the warped product shall be replaced by 

~, In the following, let r M --. H~+ l ( c )  C C~1 +1 denote a horizontal lift of the 

Lagrangian immersion L: M ~ CH n (4c). 

CASE (iii-1): ~ = $2 > 0. In this case, by applying a method similar to the 

proof of Statement (iii) of Theorem 5.1, we obtain (6.2-1). 

CASE (iii-2): ~ = 0. In this case, (6.1), (6.3) and Gauss' formula yield 

(6.8) r = 2b/r - cO, 0 2 r  . 0r 
OUjO-""'~ - 'b-~uj' 

(6.9) 02r 
OujOuk = rSjk(ibr - er j, k = 2, . . .  ,n 
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where b = vf '~.  

By solving the first equation of (6.8), we have 

(6.10) r U2, . . . ,  Un) ": eibX{A(u2,. . .  , un) + x B ( u 2 , . . .  , Un)}, 

for some C~l+l-valued functions A and B. Applying (6.10), the second equation 

of (6.8), and b 2 + c = 0, we conclude that B is a constant vector. Therefore, by 

applying (6.9) and (6.10), we obtain 

(6.11) r = e ibx 2bB u~ + "/juj + B x  + C , 

where B, 7j, C are constant vectors. By choosing the following initial conditions: 

r  ,0) = ( l /b ,0 , . . .  ,0), Cx(0 . . . .  , 0 ) = ( 0 , 1 , 0 , . . . , 0 ) ,  

(6.12) 0r (0, . . .  ,0) -- (0,0, 1, ,0), 0r  (0, . . .  ,0) -- (0, . . .  ,0, 1), 
OU2 . . . . . .  ' OUn 

we obtain (6.2-2). 

CASE (iii-3): ~ = b 2 + c  < 0. In this case, we put ~ = ~ - c .  Form 

(6.5)-(6.7) and Gauss' formula; we have 

(6.13) Cxx = 2bi Cx - cr - - 0 2 r  = (ib + ~f) ~u~' 
Ouyax 

(6.14) 02-'--~r = ~ j k e 2 6 z { (  ib  --  ~)~z -- Cr j ,  k = 2, ,n .  
OujOuk "'" 

By solving the first equation of (6.13), we get 

(6.15) C~(X, u2 , . . .  , Un) = e ibz (A(u2 . . . .  , un)e ~x + x B ( u 2 , . . .  , un)e -&: }, 

for some C~l+l-valued functions A and B. Applying (6.15), the second equation 

of (6.13), and the equation 62 + b 2 + c = 0, we conclude that B is a constant 

vector. Therefore, by applying (6.14), (6.15) and a long direct computation, we 

obtain 

( . n ) 
j=2 j----2 

where B, ~/j and C are constant vectors. By choosing the conditions given by 

(6.12) as we did for case (iii-2), we obtain (6.2-3). | 
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7. Class i f ica t ion of  L a g r a n g i a n  H-umbi l ica l  submani fo lds  in CP"  

Theorems 4.1, 4.2 and 5.1 imply that there exist abundant examples of 

Lagrangian H-umbilical submanifolds in CP n (4c) such that 

h(el ,e l )  = AJel, h(e2, e2) . . . . .  h(e, ,en) = pJel ,  
(7.1) 

h(e l , e j )= l~ge j ,  h ( e j , e k ) = 0 ,  j • k ,  j , k = 2 , . . . , n ,  

for some functions A, # with respect to some suitable orthonormal local frame 

field. 

The purpose of this and the next sections is to study and to classify 

Lagrangian H-umbilical submanifolds in CP'* (4c). Theorem 7.1 says that "most" 

Lagrangian H-umbilical submanifolds of CP" (4c) are Lagrangian submanifolds 

obtained from Legendre curves via warped products as constructed in Theorem 

4.1. 

We consider the two cases n _> 3 and n = 2 separately. 

THEOREM 7.1: Let n >_ 3 and (b: M --* CP'~(4c) be a Lagrangian H-umbilical 

isometric immersion. 

(i) If  M is of constant sectional curvature ~, then either 

(i-l) ~ = c (cs Theorem 5.1 for such examples) or 

(i-2) ~ = b 2 + e > c and up to rigid motions of CP'~(4c), M is 

isometrically immersed in C / ~  (4e) given by (5.2) in Theorem 

5.1. 

(ii) I f  M contains no open subsets of constant sectional curvature >_ c, then 

there exists a unit speed Legendre curve 

(7.2) z(x) = (El(X), z2(x)): I ~ Sa(c) C C 2 

such that up to rigid motions of CP"(4c), r is 7r o r where ~b is defined 

by 

(7.3) 

with y21 + . . .  + y~ = 1 and r is the projection of Hopf's tibration (cs 

Theorem 4.1 for details). 

Proof." Let M be a Lagrangian H-umbilical submanifold of CP" (4c) whose 

second fundamental form takes the form (7.1) for some functions A, #. 
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CASE (i): M is of constant sectional curvature 5. In this case, because n _> 3, 

(7.1) implies p(), - 2p) = 0. 

CASE (i-1): If p vanishes identically, then M is of constant curvature e. 

CASE (i-2): If # r 0, then ~ = 2# r 0 on a nonempty open subset V of M. By 

applying Theorem 5.1 we know that ~ and p are nonzero constants on V. Hence, 

by continuity, we obtain V = M. Put  b = # and 5 = 6 2 = b 2 + c > c. Then by 

applying Theorem 5.1 again, we know that  up to rigid motions of CP'~(4e), M 

is isometrically immersed in CP ~ (4c) by (5.2). This proves Statement (i). 

Now, we prove Statement (ii). So, we assume M contains no open subsets of 

constant sectional curvature 5 (_> c). In this case, 

(7.4) U := {p E M: # ( ~ -  2#) r 0 at p} 

is an open dense subset of M. 

Let e l , . . .  , en be an orthonormal local frame field on M satisfying (7.1). Let 

w l , . . .  , co" denote the dual 1-forms of e l , . . .  , e , .  Denote by (w A) the connection 

forms on M defined by 

~t n n n 

E 
j *  . J" %" : E ~ , .  

j--1 j = l  j = l  j = l  

j i J* i* . n*. wherewi = - w j ,  wi. = - w j ' ,  i = l , ' "  ,n ,  A , B  = l , ' "  , n , l * , . . . ,  

For a Lagrangian submanifold M in CP n (4c), (2.3) and (2.4) yield 

(7.6) w}'* J* j j" i" = ~ hjkwi k = W i , W i = W i .  , W j  I 

k=l  

From (7.1) and (7.6) we find 

�9 �9 �9 i" a~} = 0 ,  2 < _ i # j < _ n .  (7.7) ~1 ~ = ~ 1  ~ = ~ , ,  ~,  = ~ o l ,  �9 

By (7.1), (7.7) and equation (2.6) of Codazzi with X = Z = e l ,Y  = ej, we 

obtain 

(7.s) 

(7.9) 

(7.10) 

e j A = ( 2 # - A ) @ ( e l ) ,  j > l ,  

(~ - 2~)~{(~k) = o, 1 < j # k < . .  
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Similarly, by (7.1), (7.7) and equation (2.6) of Codazzi with X = Z -- ej, Y = 

el, we obtain 

(7.11) ej# = 3p~{(el), 

(7.12) # J ( e l )  = 0 ,  j > 1. 

We remark that (7.10) and (7.12) occur only for the case n _> 3. 

Since n >__ 3, (7.8), (7.11) and (7.12) imply 

(7.13) w { :  ( e l#  ~ w j  ' e j A = e j p = O ,  
\~ -2~]  

(7.14) w~(ek)=0 ,  l < j C k _ < n .  

j - -  2 , . . .  ,n, 

Let :D denote the distribution spanned by el and l) • be the orthogonal com- 

plementary distribution of :D, i.e., :D • is spanned by {e2 , . . . ,  en}. 

LEMMA 7.2: On U we have 

(1) the integral curves of el are geodesics of M, 

(2) the distributions l)  and :D • are both integrable, 

(3) there exist local coordinate systems {11, . . .  ,x,~} such that (a) l) is 

spanned by {O/Ox} and Z) • is spanned by {O/Ox2, . . . ,O/ax,~} and 

(b) el = O/Ox, w 1 = dx, and 

(4) A and # are functions of x = x 1 satisfying 

(7.15) k'(x) + k2(x) = #2 _ A# - c, k = #' 
A - 2#'  

where ' denotes differentiation with respect to x. 

Proof'. (7.13) and Cartan's structure equations imply d, oJ 1 = 0 and Velel  = 0. 

Therefore, the integral curves of el are geodesics. Thisproves Statement (1). 

For j, k > 1, (7.14) implies ([ej,ek], el) = w~(ej) - @ ( e k )  = 0 which shows 

that the distribution :D • is integrable. The integrability of :D is obvious, since D 

is a 1-dimensional distribution. This proves Statement (2). 

Since :D is 1-dimensional, there exists a local coordinate system { y l , - . . ,  Y~} 

such that el = O/Oyl. Because 1) • is integrable, there also exists a local coordi- 

nate system {Zl,..., Zn}  such that O/Oz2, . . . ,  O/Ozn span :D • Put  

(7.16) xl = Yl,x2 = z2, . . .  ,x~ = zn. 
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Then { x l , . . . ,  x,,} is a local coordinate system satisfying conditions given in (3). 

From (7.12) and statement (3), we see that functions X and/z depend only on 

x (= x:).  (7.15) follows from (7.13) and the structure equations. This proves 

Lemma 7.2. m 

An integrable distribution jr  in M is called spherical  if leaves of j r  are totally 

umbilical submanifolds with parallel mean curvature vector in M. 

LEMMA 7.3: On U the distribution 1) is auto-parallel and its orthogonal 

complementary distribution l)  • is spherical. Moreover, each leaf of ~ •  is of 

constant sectional curvature c + #2 + k 2, where k = x-2~," 

Proo~ Lemma 7.2 implies that the distribution :D is auto-parallel. Let X, Y be 

two vector fields in T ~• and el a unit vector field in ~D. Then, by (7.1), (1.3), and 

Codazzi's equation, we have 

A (VxY, el) = ( V x Y ,  A j , t e l )  = - (Y, V x ( A j , t e l ) )  

= - (Y, (VxAj~,)el)  - (Y, Aj~  (Vxe:))  

= - (Y,V~,(A.r~,X)) + (Y, A j e , ( V ~ , X ) )  

- (Y, A j e , ( V x e l ) )  - (Y, ADxJe, e:) 

= - (Y, V~, (#X)) + 2 .  (Y, V, ,X)  - # (Y, Vxel )  

= - (el#) (X, Y)  + 2 # ( V x Y ,  el}. 

which yields 

(7.17) ( V x Y ,  el) = \ 2 #  - X /  

Formula (7.17) implies that  leaves of $)• are totally umbilical hypersurfaces 

with parallel mean curvature vector. Therefore, Z) • is a spherical distribution. 

From Lemma 7.2, (7.17) and Gauss' equation, we know that each leaf of Z) • 

is of constant sectional curvature c + #2 + k 2. This proves Lemma 7.3. m 

LEMMA 7.4: U is an open portion of the warped product I x r ~  Sn-l(1) where 

(7.18) ~ = X / c + / ~ 2 + k 2  and k =  #' 
A - 2#" 

Proof'. By applying Lemma 7.3 and a result of Hiepko [9], we know that U 

is locally a warped product I xl(x) Sn-l(1),  where Sn-:(1) is the unit (n - 1)- 

sphere and f (x)  is the warped function. Moreover, we also know that  each vector 
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tangent to I is in the distribution T~ and each vector tangent to S'~-1(1) is in the 

complementary distribution :P• 

With respect to a spherical coordinate system {us , . . .  , u ,}  on Sn-l(1) ,  we 

have 

go = du22 + cos 2 usdu 2 + " "  + c os2 u2"'" cos 2 un-ldu~. 

Thus 

(7.19) g = dx 2 + f2(x){du~ + cos 2 u2du 2 + ' "  + cos s u s " "  cos s u,~-tdu2}. 

From (7.19) we obtain 

0 0 f '  0 V 0 ~X 
V~Ox-- - -0 ,  V~0u---k -- f 0uk'  ~ 0 u 2  -- f f t  , 

0 0 
(7.20) V ~ ,  Ouj tanui-~u j , 2 <_ i < j, 

0 _ sin2uk j-1 
V ~ Ouj - f f f  H cOs2 ut + 2 H c~ ut 0uk 

t=2  t----k+ 1 

where 2 < i, j, k < n. 

(7.1), (7.20) and Codazzi's equation imply 

f '  # (7.21) - -  = k, k = 
f A - 2#" 

Thus, there is a nonzero constant b such that 

(7.22) f = bef  k(z)dz. 

By applying (7.20), we know that the sectional curvature of the plane 

section spanned by O/Ou2, O/Ou3 is given by 

(7.23) K ~u2 ^ 

On the other hand, (7.1) and the equation of Gauss yield 

(7.24) K ( s 1 6 3  2. 

Therefore we have 

(7.25) f(x) = bef k(z)dx - 1 - t(x) : v/c + + 

We need the following. 
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/ at . 
LEMMA 7.5: Let A(x) and/~(x) be real-va/ued functions o f x  and k(x) = x-2~ 

I f  A and # satisfy 

k '  + k 2 - - / / 2  + A/.L + C = O, (7.26) 

then 

/ (f ) (7.27) Yl = e f{k+~')~, Y2 = Yx exp {iX(t)- 2i#(t)- 2k(t)}dt dz 

are two independent complex-wadued solutions of the differential equation 

(7.28) y"(x) = iX(x)y'(x) - cy(x). 

Proof: This lemma can be verifed by a direct computation. II 

Now we return to the proof of Statement (ii) of Theorem 7.1. 

Consider the restriction of r to the open dense subset U. We denote this 

restricted Lagrangian isometric immersion also by 2. Let r 0 + S="+l(c) C 

C~ +1 be a horizontal lift of the Lagrangian immersion ~: U ~ CPn(4c) via 

Hopf's fibration. Then, by (7.1), (7.19), (7.20), (7.21) and Gauss' formula, we 

have 

(7.29) r  C x =  ~ x '  

(7.30) ~7yr = (i# + k)Y, 

(7.31) 

0r 02r 
r - -  O x  2 , 

v r v z r  = <Y, z )  { ( i . ) r  - ~ }  + v r z ,  

where Y, Z are vector fields tangent to the second component S"-x(1) of the 

warped product and V y Z  is the tangential component of V y Z .  

By Lemma 7.2, Lemma 7.5 and (7.29} we have 

r u 2 , . . . ,  u , )  = A(u=, . . . ,  u , ) e f  (k+i~')~ 
(7.32) 

for some C~+l-valued vector functions A and B. From (7.30) and (7.32), we 

obtain OB/Ou~ = O, j = 2 . . . .  , n. Thus, B is a constant vector in C "+1. 

By applying (7.32), (7.31) with Y = Z = 0/c9u2, we may obtain 

r = (cl (ua,. .  �9 , u , )  sin u= + A2(u3, �9 �9 �9 , u , )  cos u=)ef (i"+k)~ 
(7.33) 

+ b2(i# - k)Bef(ix-i~+k) ~ ,  
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where cl, A2 and B are orthogonal with fall  : [A2[. Then, by applying (7.33) 

and (7.31) with Y = O/Ou2, Z = O/Ouj, j = 3 , . . . ,  n, we conclude that  cl is a 

constant vector. 

Furthermore, by applying (7.33) and (7.31) with Y = Z = O/Ou3, we have 

(7.34) A2 = (sin U3)C2 (U4, �9 �9 �9 , Un) "~- (COS u3)A3(u4, . . .  , un). 

By applying (7.33), (7.34) and (7.31) with Y = O/Ou3, Z = O/Ouj , j  = 4 , . . .  ,n,  

we also know that c2 is a constant vector. 

Continue such processes n - 1 times, we obtain 

n--2 

r =(Cl sin u2 + c2 sin u3 cos u2 + " "  + c , - i  sin u , -1  H cos uk 
k=2 

(7.35) n-l 

+ cn H cos uk)e f  (i~+k)~ + b2(i# - k ) B e f  (iA-i~'+k)dx, 
k=2 

where C l , . . . ,  c~, B are orthogonal constant vectors. By choosing B, Cl, . . . ,  c ,  

parallel to the canonical basis (1 ,0 , . . .  , 0 ) , . . . ,  (0 , . . .  ,0, 1), respectively, we 

obtain the desired expression (7.3) for r | 

8. Lagrangian H-umbilical surfaces in CP 2 

In this section we investigate Lagrangian H-umbilical surfaces in CP 2 . 

THEOREM 8.1: We have the following results. 

(i) Let r M ~ CP 2 (4c) be a Lagrangian isometric immersion from a surface 

into Cp2(4c). Then, for each point p E M ,  there exists an orthonormal 

basis {el, e2} of TpM such that the second fundamental form o f r  at p 

takes the form: 

(8.1) h(e l ,e l )  = AJel,  h(el ,e2) = ~Je2, h(e2,e2) = lzJel +~}Je2. 

In particular, if M is a Lagrangian minimal surface in CP 2 (4c), for each 

p E M, there exists an orthonormal basis {el, e2} of TpM such that 

(8.2) h(el ,e l )  = - # J e l ,  h(el,e2) = #Je2, h(e2,e2) = #Je l .  

(ii) For each constant ~, there exists a non-totally geodesic Lagrangian H- 

umbilical isometric immersion 

(8.3) g: M(~) ~ CP 2 (4c) 
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(8.4) 

(8.5) 

of a surface of constant curvature ~ into CP ~ (4c) such that integral curves 

of J H  are geodesics in M(~). 

(iii) Let (b: M --* CP 2 (4e) be a Lagrangian H-umbilical isometric immersion 

of a surface into CP 2 (4e). I f  M contains no open subsets of constant 

sectional curvature >_ c and if  integral curves of J H are geodesics in M,  

then there exi~,!s a unit speed Legendre curve 

z(x) = (zl(x) ,  z2(x)): I ~ $3(c) C C 2 

such that up to rigid motions ofCp2(4c),  r M --* Cp2 (4c) is r o e  where 

r defined by 

r  u) = (Zl(X), z2(x) sinu, z2(x) cos u). 

Proof: (i) If p is a totally geodesic point, there is nothing to prove. So we 

assume that p is a non-totally geodesic point. We define a function f~p by 

/3p: UMp ~ ~. v ~ 13p(v) = (h(v, v), Jv ) ,  

where VMp = {v e TpM: (v,v) = 1}. Since UMp is a compact set, there 

exists a vector v in UMp such that/~p attains an absolute minimum at v. Since 

p is non-totally geodesic, it follows from (2.4) that /~p r 0. By linearity, we 

have t3p(V) < 0. Because f~p attains an absolute minimum at v, it follows from 

(2.4) that (h(v, v), Jw)  = O, for all w orthogonal to v. So, using (2.4), v is an 

eigenvector of the symmetric operator A jr. By choosing an orthonormal basis 

(el,  e2} of TpM with el -- v, it is easy to see that {el, e2} satisfies the desired 

property. This proves Statement (i). 

(ii) We divide the proof of Statement (ii) into five subcases. 

CASE (ii-1): 5 > c. Put  ~ = $2, b = ~/~ - c. We define a C-totally real isometric 

immersion Ce: I x ~ r R --* SS(c) C C 3 by 

e'b  + cosy)e ''x +  b(b + C e ( x ' Y ) = 2 ~ 2  \" V/~ ' ~/~ +V~COSy) e-i6x' 
(8.6) 

(5 - b + b cos y)e i6~ - (~ + b - b cos y)e -i$x, 6(e i~x + e -i~x) sin y) .  

By a direct and long computation we know that ~r o ~ defines a Lagrangian 

H-umbilical isometric immersion from the surface M(~) into C P  2 (4c). It is easy 

to verify that  integral curves of J H  are geodesics in M. 
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CASE (ii-2): ~ = C. Consider the warped product M(c) = I • ~r R, 
v~ 

where I is the open interval ( :~, ~). We have 

~x ~ Oy _ sin(2v/-cx) CO cO - vfc tan(v~x) V ~  (8.~) v ~ =o ,  v ~ ~ = ' 2v~ Ox 

We define a symmetric bilinear form a on M(c) by 

(8.s) 
t 0-~-, 0--~ sec(v~x)0~ ( c O c O ) = s e c ( v r c x )  0 

~ c o x / =  ' ~ ~ ' ~  ~' 

~ ( ~ , ~ ) =  sec(v~) ~  

By applying (8.7), (8.8) and by a long computation, we know that M(c) to- 

gether with the symmetric bilinear form a satisfies the three conditions given in 

Theorem A. Therefore, there exists a Lagrangian H-umbilical isometric 

immersion g: M(c) -~ CP~(4c) with h = Ja  as its second fundamental form. 

In this case integral curves of J H  are also geodesics in M. 

CASE (ii-3): 0 < ~ _< C. Put 5 = 5 ~. Consider the warped product surface 

Jl4 = I • ~cos(~) R, where I is the open interval ( - ~ ,  ~) .  Let 

(8.9) e l - - ~ x ,  e2=Ssec(Sx)  . 

Then el, e2 form an orthonormal frame field and 

~y ~y 0 sin(25x) 0 
0 = -S tan(Sx)  V ~  Oy 25 cOx' (8.10) v ~ = 0 ,  v ~  , - 

w21 = 5 tan(Sx)w 2. 

Let a be a real number greater than 2(c-52). Then there is an open subinterval 

of I such that asec2(Sx) > 2 ( c -  52). On I we define functions )~ and # by 

(8.11) A=  
asec2(Sx) - 4c+ 452 

v/2a sec2(Sx) - 4c + 452, 
It = ~x/2asec2(Sx) - 4c + 452. 

Then we have 

(8.12) 
A'(x) = 25(A2 + 4c - 452) tan(Sx) 

x/A 2 + 4c - 452 + )~ 
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We define a symmetric bilinear form a on M(~) by 

(8.13) a(el,el) = Ael ,  a ( e l , e 2 )  = #e2, a(e2,e2)  = ge l .  

I t  follows from (8.9)-(8.13) and a long computation that  M(~) = ] x } co,(6z) R 

together with a satisfies the three conditions given in Theorem A. Hence, there 

exists a Lagrangian H-umbilical isometric immersion g: M(5) --* CP"  (4c) with 

h = J a  as its second fundamental form. It  is easy to see that  integral curves of 

J H  are geodesics in M. 

CASE (ii-4): ~ = 0. Let b be a nonnegative number. We define a map 

Cb: R • R --, S5(c) c C 3 by 

(8.14) 

eibz [ eia~c - i o z  

e + e ,/-SeiO  

2 / '  

where a = v ~  + c and 7 = V/2a(a + b). 

By a direct but long computation we know that,  for each b _> 0, the map lr o Cb 

defines a Lagrangian H-umbilical isometric immersion from a Euclidean 2-plane 

E 2 into C P  2 (4c) such that  the integral curves of J H  are geodesics. 

CASE (ii-5): ~ < 0. Put  5 --- -62  with 6 > 0. Consider the warped product 

M = R x }e,, R. Then M is of constant curvature ~ < 0. Let 

0 6e_6Z 0 
(8.15) el = O-xx' e2 = 0y" 

Then el ,  e2 form an orthonormal frame field and, moreover, we have ~v] = -&v  2. 

Let a be a real number less than 2. Then there is an open interval I containing 

0 such tha t  2 > ae 2~z. On I we define functions A and # by 

( 8 . 1 6 )  = 

Then we have 

(8.17) 

2 c v / ~ - ~ ( a e  2~x - 1) v / ~ / 2 a  - a2e 25z 

e~Z~/2 a _ a 2 e 2 $ z  , D = ae6Z 

~' (x )  ----- 26()~2 + 4C T 462) . 

~/A2 + 4c + 462 - 
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We define a symmetric bilinear form a on M(~) by 

(8.18) a(el,el) = A e l ,  a(el,  e2) = p e 2 ,  a(e2,e2) = pel. 

By (8.15)-(8.18) and a long computation, we know that M(~) = I x ~eSx R 

together with a satisfies the three conditions given in Theorem A. Thus, there 

exists a Lagrangian H-umbilical isometric immersion ~: M(~) ~ CP n (4c) with 

h = Ja  as its second fundamental form. It is easy to verify that  integral curves 

of J H  are geodesics in M. This proves Statement (ii). 

Statement (iii) can be proved in a way similar to that of Statement (ii) of 

Theorem 7.1 with minor modifications. | 

Remark 8.2: The assumption on the integral curves of J H  made in Statement 

(iii) of Theorem 8.1 cannot be omitted. This can be seen from Statement (i) of 

Theorem 8.1 and the fact that the only Lagrangian minimal surfaces of constant 

curvature > 0 in CP 2 (4c) is the totally geodesic one (cf. [7]) and that most 

Lagrangian minimal surfaces in CP 2 (4c) cannot be expressed in the form of 

(8.5). 

Remark 8.3: From the proof of case (ii-2) in Statement (ii) we know that  there 

exists many Lagrangian isometric immersions from a surface M(c) of constant 

curvature c into EP 2 (4c) which are different from the totally geodesic one. 

9. L a g r a n g i a n  H-umbi l ica l  submani fo lds  in CH ~ 

In this and the next sections we investigate Lagrangian H-umbilical submanifolds 

of CH '~. We assume that the second fundamental form of M takes the following 

form: 

h ( o ,  el) -~ AJel, h(e2, e2) . . . . .  h(en, e,~) = pJel ,  
(9.1) 

h ( e l , e j ) = # J e j ,  h (e j , ek )=O,  j # k ,  j , k = 2 , . . . , n ,  

for some functions A, # with respect to some orthonormal local frame field. 

THEOREM 9.1: Let r M -~ CH'~(4c),c < 0 be a Lagrangian H-umbilical 

isometric immersion. / f  n _> 3, then the following statements hold. 

(i) I f  M is of constant sectional curvature ~, then either 

(i-l) ~ = c (cf.. Theorem 6.1, in particular (6.2-3) with b = O) or 

0-2) 5 > c and up to rigid motions of CH "~ (4c), M is isometrically immersed 

in CH ~ (4c) by (6.2-1), (6.2-2) or (6.2-3) given in Theorem 6.1 with b > O. 
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(ii) If  M contains no open subset of constant sectional curvature > c, then M 

is foliated by real-space-forms N '~- 1 ( u( x ) ) of constant sectional curvature 
/J' 

u(z) = c + #2(x) + k2(x) where k = x-2" and A, # are given by (9.1). 

Moreover, 

(ii-1) if  u > O, then there exists a unit speed Legendre curve 

z = (zl, z2): I --* Hal(C) C C~ 

such that up to rigid motions of CHn( 4c), ~b is locally given by 

7r o r M ~ H~n+l(c) ~ CH" (4e) 

(9.2) gz(x, Yl . . . . .  Yn) = (zl(x), z2 (x )y l , . . . ,  z2(x)yn) 

with ~ + y:: + . . .  + ~ = 1, 

(ii-2) if  u < O, then there exists a unit speed Legendre curve 

z = (zl, z2): I ~ H3(c) C C~ 

such that up to rigid motions of CH n (4c), r is locally given by ~r o r 

where 

(9.3)  r  y ~ , . . . ,  y~)  = ( z ~ ( z ) y ~ , . . . ,  z~ (~ )y ~ ,  z~ (~) )  

with ~ - y~ . . . . .  ~:, = 1 (el. Theorem 4.2); 

(ii-3) if  u = O, then up to rigid motions of CH'~ ( 4c), ~ is locally given by r o r 

where 

(9.4) 

b=ef~  ~ 1 - 2 Z u ~ -  (i]~+k)e-f:2k(t)dtdx , 

j = 2  

( i , ( o )  - k (o ) )  u~ + - ( ~ ,  ~-,~j~ ~,~ , ~ , 2 , . . .  ,~,~ �9 
c 

j - -2  

where 
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Proof." Statement (i) can be proved exactly in the same way as Statement (i) of 

Theorem 8.1. 

For Statement (ii), first we observe that under the same notations as section 

7, we have Lemmas 7.2 and 7.3 as well. This implies that M is foliated by real- 

space-forms N ~-l(u(x))  of constant sectional curvature u(x) = c + #2(x)+ k2(x) 

where k = _aL_ We separate the proof of the remaining part of Statement (ii) ~-2~" 

into three subcases. 

CASE (ii-1): U(x) = C + #2(x) + k2(x) = ~2(x) > 0. This case can be proved 

exactly in the same way as Statement (ii) of Theorem 8.1. 

CASE (ii-2): u(x) = c + #2(x) + k2(x) = -g2(x) < 0. In this case, Lemma 7.3 

and Hiepko's result imply that M is locally a warped product I • f(~) H ~-1 (-1). 

By using Codazzi's equation we may obtain as in the proof of Lemma 7.4 that 

f (x )  =- bef  k(~:)d~ = 1/~(x), where b is a positive number. 

Let r M ~ H~+I(e)  C C~1 +1 be a horizontal lift of the Lagrangian immersion 

r M --* CH~(4c). Thus, by (9.1) and Gauss' formula, we have 

0r 0~r 
(9.5) r 1 6 2 1 6 2  r  r  Ox 2' 

(9.6) ~7yr = (ip + k)Y, 

(9.7) ~Ty~Tzr = (Y, Z) ((i#)r - c~} + V y Z ,  

where Y, Z are vector fields tangent to the second component S~-1(1) of the 

warped product and V y Z  is the tangential component of VyZ.  

We choose coordinates on I • H'~-I(-1)  with 

n - 1  

(9.8) 9 = dx ~ + f~(x)(~y2 +sinh ~ y(d~  +cos ~ ~ d ~  + - . - +  H c~ ~ d ~ _ ~ ) } ,  
k=3 

for y > 0. From (9.8) we have 

(9.9) 

V ~ x = 0 ,  v ~  =k , V ~ u k = k  , 

0 co thY~u,  V o ~ = - t a n u j  0 v ~  ~ = ~ ~ o ~  ~ '  

V ~ ~y _b2ke2 f kd=~x ' 

0 
V ~ Ou3 

3 < k < n ,  

3 < _ j < k ,  

0 0 
- - -  b2ke2 f kd~ sinh2 y~x  sinhycoshy~y, 
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0 = _ s i n h  2 Y b2ke 2 f YI cos2 ut + cos 2 ut 
t=3 t=3 

- E  sin kcosu  II cos u, , j 4. 
k = 3  \ t = k + l  / 

By Lemma 7.2, Lemma 7.5 and (9.5) we have 

r  us . . . . .  un) = A(U, u3, . . . , u , ) e  fo  (k+iu)d~ 
(9.10) 

+ B ( y ,  U s , . . . ,  u , , ) e f :  (~+i~)~ efo{i)~(t)-2i/J(t)-2k(t)}dtl dx,  

for some C~+l-valued vector functions A and B. From (9.6) and (9.10), we know 

that B is a constant vector in C ~+1. 

By applying (9.10) and (9.7) with Y = Z = O/Oy, we obtain 

r = ( e l  ( U 3 ,  �9 �9 �9 , tLn )  cosh y + A 2 ( u 3 ,  �9 �9 �9 , un) sinh y ) e f o  (i~'+k)d= 
(9.11) 

- b2(i# - k)Befo(i:*-i~'+k) d=, 

where c,, A2 and B are orthogonal with I c l l =  IA21 . Then, by applying (9.11) 

and (9.7) with Y = cg/Oy, Z = O/cSuj , j  = 3 , . . .  ,n,  we conclude that ct is also a 

constant vector. Furthermore, by applying (9.11) and (9.7) with Y = Z = 0 /0u3 ,  

we obtain 

(9.12) A2 = c2(u4 . . . .  , u , )  sinu3 + A3(u4 . . . . .  un) cos u3. 

Thus, we have 

= (cl cosh y + c~ sinh y sin u3 + A3 sinh y cos u3)efo (i~,+~)~ 
(9.13) 

- b2(i/z - k)Befo(i:*-i~'+k) a=, 

where cl, c2, B are constant vectors and, moreover, cl, c=, A3, B are orthogonal. 

Again, by applying (9.7) with Y = O/Ous and Z = O/Ouj,  j > 3, we know 

that  c2 is a constant vector. Continue such processes n - 1 times, we obtain 

r = (cl cosh u2 + sinh u2 (c= sin u3 + cs cos u3 sin u4 + ' "  
(9.14) 

�9 . - +  c,, cos u 3 " "  cos u ,_  1))ef0"(i,+k)d= _ b2(i/z _ k ) B e f o ( i x - i u + k )  '~,  

where Cl , . . .  , c , , B  are constant vectors. Therefore, by choosing a suitable 

complex coordinate system on C~1 +1 we obtain (9.2) associated with a suitable 

unit speed Legendre curve z (x )  = (z1(x) ,  z~(x)) in H~(c).  
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CASE (ii-3): u(x) = c+~2(x)+k2(x) = 0. In this ease, Lemma 7.3 and Hiepko's 

result imply that M is locally a warped product I • E '~-I with 

(9.15) g = dx 2 + f2(x){du] + du] + . . .  + du~}. 

By using Codazzi's equation we may obtain as in the proof of Lemma 7.4 that  

f (x )  = beJ~ k(~)d~ = 1 
e ( z )  ' 

where b is a positive number. 

and so we have 

Without loss of generality, we may choose b = 1 

f ( x )  = e f :  k(Od,. 

Let ~: M --* H~ "+1 (c) C q-t-1 be a horizontal lift of the Lagrangian immersion 

~: M ~ CHn(4c). Thus, by (9.1) and Gauss' formula, we have 

0~ 0 ~  
(9.16) ~ , ,  = Ai~P, - c~, Cx = ~xx' r  = Ox 2' 

(9.17) ~Px~ = (i# + k)r 

(9.18) ~ 2 u , ~ , = 6 j k b 2 e 2 f k ~ { ( i # - k ) ~ z - c r  j , k = 2 , . . . , n .  

By Lemma 7.2, Lemma 7.5 and (9.16) we have 

(9.19) 
r  u 2 , . . .  , u,,) = A ( u 2 , . . .  , u , , )eJ:  (k+i')dx 

,1o 

for some C~+l-valued vector functions A and B. 

know that  B is a constant vector. 

By applying (9.19) and (9.18), we may obtain 

(9.20) OA = ~jkb2(i~ _ k)Bei J~(x_2~,),~ ' 
OujOuk 

From (9.17) and (9.19), we 

i , k =  2 , . . .  ,n. 

On the other hand, #' = k(,~ - 2#) and c + #2 + k 2 = 0 imply that 

(i~ - k)e i fo" (~-2~,),~ 

is a constant which is denoted by a. Thus (9.20) yields 

OA 
(9.21) OujOu-------~ - 6Jkb2aB' i, k = 2 , . . . ,  n. 
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Hence, A takes the following form: 

(9.22) A(u2 , . . .  , u,~) = "/+ Z ( c j u j  + ~ju2), 
j=2 

for some constant vectors 7, cj, ~j. Combining (9.19) and (9.22) we obtain 

(9.23) r = ef (~"§ -1 + (c~uj + ~ju ~) + E(z), 

where 

(9.24) E(x)  = Be f~  (i~'+kld~ efs ("~-'"+k)dtdx. 

By applying (9.18), (9.23) and c + #5 + k 2 = 0, we obtain 

2c~ ( ~ (9.25) E'(x)  - (i# + k )E(x)  = i# + k)ef; (,~,-k)dx, 

for j = 2 , . . .  , n. Hence ~ . . . . .  B,~. We put ~ = 2~j/cb 2. Then, by solving 

(9.25), we obtain 

(/0 ) (9.26) E(x)  = e f  (i~'+k)'~ j3 (i# + k)e -2 f~ k(t)dtdx + e , 

where e is a constant vector. By combining (9.24) and (9.27) we have 

j~-2 j=2 

for some constant vectors 77, cj, ft. 

We choose the initial conditions at the origin 0 E C~1 +1 such that 

~b(O) = (1/x/~-~, 0 , . . . ,  0), 

V~(O) = (0, 1,0 . . . .  ,0),r = (0 ,0 ,1 , . . .  ,0 ) , . . .  , r  (0, . . .  ,0,1). 

Then we obtain (9.4) which completes the proof of Theorem 9.1. | 
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Remark 9.2: The  Lagrangian H-umbilical  submanifolds defined by (9.4) in 

Sta tement  (ii-3) of Theorem 9.1 are neither in the form of (9.2) nor in the form 

of (9.3), in general. For example, if we choose e = - 1  and it(x) = s inx.  Then  

k = cos x, A = 1 + 2 sin x, g = dx 2 q- e 2 sin x (dug + . . .  + du 2). 

So, by applying (9.4) we obtain 

r  u2, �9 �9 �9 , un) = e -~e 1 + _ e-2 sin x+iZdx ' 
j----2 

) - -  u X ,  " t t 2 ,  . . . , U n  
(9.27) ~-  + e -2  sin x+ix'z 

j=2 

which is neither in the form of (9.2) nor in the form of (9.3). 

10. L a g r a n g i a n  H - u m b i l i c a l  s u r f a c e s  in  CH 2 

Assume M is a Lagrangian H-umbilical  surface in C H  2 with 

(10.1) h(el ,e l )  = AJel, h(el,e2) = #Je2, h(e2,e2) = #Jel ,  

for some functions A, it with respect to some or thonormal  local frame fields. 

Pu t  

k =  itl 
A - 2it" 

THEOREM 10.1: 

(i) For each constant ~, there exists a non-totally geodesic Lagrangian H- 

umbilical isometric immersion g: M(~) ~ CH~(4c) of a surface M(~) of 

constant curvature ~ into C H  2 (4c) such that the integral curves of J H  

are geodesics in M(~). 

(ii) Let (b: M ~ C H  2 (4c) be a Lagrangian H-umbilical isometric immer- 

sion of a surface into CH2(4c) satisfying (10.1). I f  M contains no open 

subsets of constant sectional curvature >_ c and if  integral curves of J H 

are geodesics in M,  then 

(ii-1) i f  u(x) = c + #2(x) + k2(x) > 0, there exists a unit speed Legendre curve 

z = (zl, z2): I ~ H3(c) C C 2 such tha t  up to rigid motions of CH2(4c), 

~b is locally given by ~r o r where 

(10.2) r y) = (zl(x), z (x) cos , z2(x) siny); 
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(ii-2) if u = C + tz 2 + k 2 < O, then there exists a unit speed Legendre curve 

z = (zl, z2): I --, H~(c) C C~1 such that up to rigid motions orCH2(4c), 
~b is locally given by ~r o r where 

(10.3) r  y) = (zl (x) cosh y, zl (x) sinh y, z2(x)); 

(ii-3) if u = c + #2 + k 2 = O, then up to rigid motions ofCH2(4c), ~ is locally 

given by lr o g) where 

r  y ) =  efo(iu+k)d*( l 1 cy22 ~0 z (il*+ k)e~-fo2kr , 

(lO.4) 
(i#(O) -k(O)) ( ~  + ~ fox(i# + k)e- fo2'(t)dtdx) ,y)  . 

Proo~ We divide the proof of Statement (i) into two cases. 

CASE (i-l): fi > c. (6.2-1), (6.2-2) and (6.2-3) give the Lagrangian H-umbilical 

isometric immersion of M(fi) into CH 2 (4c) such that integral curves of JH are 

geodesics. 

CASE (i-2): fi <_ c. Put  6 = -62. Let M be the warped product surface M = 

R x ~ .  R. Then M is of constant curvature ~ < O. Put  

0 , = 6e_SXO 
(10.5) el = ~xx e2 Oy" 

Then el, e2 form an orthonormal frame field such that w~ = -6w 2. 
Consider the following first order ordinary differential equation 

26(A 2 + 4c + 462) 
(10.6) A'(x) = ~/A 2 + 4c + 462 + A" 

Choose an initial condition A(0) = Ao with Ao > 0. Since c > 0, (10.5) together 

with the initial condition has a unique solution A = A(x) on an open neighbor- 

hood, say/~, of 0. By using the solution A, we define a function/a by 

1 (A + J A  2 + 4C + 462). (10.7) u ( x )  = 

We define a symmetric bilinear form a on M (~) by 

(10.8) a(el,el) = Ael, a(el,e2) = ~e2, a(e2,e2) = uex. 
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(10.5)-(10.8) implies that  M(~) together with a satisfies the three conditions 

given in Theorem A. Therefore, there exists a Lagraagian H-umbilical isometric 

immersion g: M(~) --* CH2(4c) with h = J a  as its second fundamental form. It 

is easy to verify that  the integral curves of J H  are geodesics. 

Statement (ii) can be proved as Statement (ii) of Theorem 9.1 with minor 

modifications. | 

Remark  10.2: As Theorem 8.1, the assumption on the integral curves of J H  

made in statement (ii) of Theorem 10.1 cannot be omitted. 

References  

[1] C. Baikoussis and D. E. Blair, On Legendre curves in contact 3-manifolds, Geome- 

trine Dedicata 49 (1994), 135-142. 

[2] V. Borrelli, B. Y. Chen and J.-M. Morvan, Une caractdrization g~om~trique de 

la sphbre de Whitney, Comptes Rendus de l'Acad~mie des Sciences, Paris 321 

(1995), 1485-1890. 

[3] I. Castro and F. Urbano, Twistor holomorphic Lagrangian surfaces in complex 

projective and hyperbolic planes, Annals of Global Analysis and Geometry 13 

(1995), 59-67. 

[4] B. Y. Chen, Jacobi's elliptic functions and Lagrangian immersions, Proceedings of 
the Royal Society of Edinburgh. Section A. Mathematics 126 (1996), to appear. 

[5] B. Y. Chen, Complex extensors and Lagrangian submanifolds in complex 

Euclidean spaces (submitted for publication). 

[6] B. Y. Chen, F. Dillen, L. Verstraelen and L. Vrancken, An exotic totally real mini- 

mal immersion o[ S a in CP a and its characterization, Proceedings of the Edinburgh 

Mathematical Society. Section A. Mathematics 126 (1996), 153-165. 

[7] B.-Y. Chen and K." Oguie, On totally real submani[olds, Transactions of the 

American Mathematical Society 193 (1974), 257-266. 

[8] B.-Y. Chen and K. Oguie, Two theorems on Kaehler manifolds, The Michigan 

Mathematical Journal 21 (1974), 225-229. 

[9] B. Y. Chen, and L. Vrancken, Lagrangian submani[olds satiMying a basic equality, 

Mathematical Proceedings of the Cambridge Philosophical Society 120 (1996), to 

appear. 

[10] F. Dillen and S. N51ker, Semi-parallellty, muti-rotation sur[aces and the helix- 

property, Journal ffir die reine und angewandte Mathematik 435 (1993), 33-63. 



108 B.-Y. CHEN Isr. J. Math. 

[11] S. Hiepko, Eine innere Kennzeichung der verzerrten Produkte, Mathematische 

Annalen 241 (1979), 209-215. 

[12] B. O'Neill, Semi-Riemannian Geometry with Applications to Relativity, Academic 

Press, New York, 1983. 

[13] H. Reckziegel, Horizontal lifts of isometric immersions into the bundle space of a 

pseudo-Riemannian submersion, in Global Differential Geometry and Global Anal- 

ysis (1984), Lecture Notes in Mathematics 1156, Springer-Verlag, Berlin, 1985, pp. 

264-279, 


